Home » » ANALISIS REGRESI LINEAR BERGANDA

ANALISIS REGRESI LINEAR BERGANDA

Written By Haris Ahmad on Thursday, June 10, 2010 | 1:49 PM


Analisis regresi linear berganda sebenarnya sama dengan analisis regresi linear sederhana, hanya variabel bebasnya lebih dari satu buah. Persamaan umumnya adalah Y = a + b1 X1 + b2 X2 + .... + bn Xn. Dengan Y adalah variabel bebas, dan X adalah variabel-variabel bebas, a adalah konstanta (intersept) dan b adalah koefisien regresi pada masing-masing variabel bebas.

Interpretasi terhadap persamaan juga relatif sama, sebagai ilustrasi, pengaruh antara motivasi (X1), kompensasi (X2) dan kepemimpinan (X3) terhadap kepuasan kerja (Y) menghasilkan persamaan sebagai berikut:
Y = 0,235 + 0,21 X1 + 0,32 X2 + 0,12 X3
Jika variabel motivasi meningkat dengan asumsi variabel kompensasi dan kepemimpinan tetap, maka kepuasan kerja juga akan meningkat
Jika variabel kompensasi meningkat, dengan asumsi variabel motivasi dan kepemimpinan tetap, maka kepuasan kerja juga akan meningkat.
Jika variabel kepemimpinan meningkat, dengan asumsi variabel motivasi dan kompensasi tetap, maka kepuasan kerja juga akan meningkat.
Interpretasi terhadap konstanta (0,235) juga harus dilakukan secara hati-hati. Jika pengukuran variabel dengan menggunakan skala Likert antara 1 sampai dengan 5 maka tidak boleh diinterpretasikan bahwa jika variabel motivasi, kompensasi dan kepemimpinan bernilai nol, sebagai ketiga variabel tersebut tidak mungkin bernilai nol karena Skala Likert terendah yang digunakan adalah 1.
Analisis regresi linear berganda memerlukan pengujian secara serempak dengan menggunakan F hitung. Signifikansi ditentukan dengan membandingkan F hitung dengan F tabel atau melihat signifikansi pada output SPSS. Dalam beberapa kasus dapat terjadi bahwa secara simultan (serempak) beberapa variabel mempunyai pengaruh yang signifikan, tetapi secara parsial tidak. Sebagai ilustrasi: seorang penjahat takut terhadap polisi yang membawa pistol (diasumsikan polisis dan pistol secara serempak membuat takut penjahat). Akan tetapi secara parsial, pistol tidak membuat takut seorang penjahat. Contoh lain: air panas, kopi dan gula menimbulkan kenikmatan, tetapi secara parsial, kopi saja belum tentu menimbulkan kenikmatan.
Penggunaan metode analisis regresi linear berganda memerlukan asumsi klasik yang secara statistik harus dipenuhi. Asumsi klasik tersebut meliputi asumsi normalitas, multikolinearitas, autokorelasi, heteroskedastisitas dan asumsi linearitas (akan dibahas belakangan).
Langkah-langkah yang lazim dipergunakan dalam analisis regresi linear berganda adalah 1) koefisien determinasi; 2) Uji F dan 3 ) uji t. Persamaan regresi sebaiknya dilakukan di akhir analisis karena interpretasi terhadap persamaan regresi akan lebih akurat jika telah diketahui signifikansinya. Koefisien determinasi sebaiknya menggunakan adjusted R Square dan jika bernilai negatif maka uji F dan uji t tidak dapat dilakukan.
Share this article :

0 Komentar:

Post a Comment

Silahkan berkomentar disini walaupun hanya "Hay". Kami akan menghargai komentar anda. Anda berkomentar saya akan berkunjung balik

 
Support : Aris Decoration | Galaxy Young
Copyright © 2014. All in here - All Rights Reserved
Template Created by Creating Website Published by Mas Template
Proudly powered by Blogger